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The propagation of acceleration waves in an anisotropic thermoelastic medium 
is studied. It is shown that taking account of the finiteness of the heat distribu- 
tion velocity results in the appearance of four kinds of accelaration waves, whose 
velocities and damping coefficients depend in an essential way on the direction 

of wave surface propagation. A comparison between the velocities and damping 
coefficients of plane acceleration waves in a zinc crystal, obtained with and with- 

out the finiteness of the heat propagation velocity taken into account, is presented. 
The papers [ 1, 21 are devoted to the influence of the coupling of the strain 

and temperature fields on the nature of wave propagation in a homogeneous iso- 

tropic body in the case of an. infinite heat distribution velocity. A number of 
features due to coupling of the fields is obtained therein, and it is shown in par- 

ticular that weak and strong discontinuities damp out, and the order of damping 

is determined by an exponential factor. 
Taking account of finiteness of the heat distribution velocity results in the 

appearance of two kinds of longitudinal waves whose propagation velocities de- 

pend in an essential manner on the velocity of the heat perturbation [3, 41. 

1. Let us write down the system of equations governing the dynamical behavior of a 
thermoelastic anisouopic medium in which the heat is propagated at a finite velocity 

qi,i + c,0’ + T&jeij = 0 (1-l) 
rqj + qj = - K8,i (1.2) 

Oij,j = PUi” (1.3) 
&ij = ‘12 (“i,j + %,i) (i-4) 
Oij =ZI Cijtl&k[ - Pij0 (1.5) 

Here qj are the heat flux vector components, 0 = 2’ - T, is the body temperature, 
T, is the body temperature in the natural state, cE is the specific heat for constant strain, 
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fiij = Cijklakl, akl are the linear thermal expansion coefficients, Cijkl are the iso- 

thermal stiffness coefficients of the anisotropic material, eij is the strain tensor, Kij 
are the heat conduction coefficients, r is the relaxation time of the heat flux, Qij is 
the stress tensor, ui the displacement components, p the density ; the Latin subscripts 

take on the values 1, 2, 3 , the dots over the quantities denote the time derivative, and 

the subscript after the comma denotes the derivative with respect to the appropriate co- 

ordinate. 
The energy conservation equation (1. l), the law of Fourier taking account of the heat 

flux inertia (1.2) the motion equation (1.3). the Cauchy formula (1.4) and the general- 

ized Duhamel-Neumann relationship (1.5) are a system of nineteen equations in the un- 

knowns pi, 0, cijc pi, Eij. 
Henceforth, the acceleration wave will be understood to be the isolated surface on 

which the stresses, the velocities, the temperature, and the heat flux are continuous, but 

some of their partial derivatives are discontinuous. 
Taking into account that the quantities qj are continuous on the wave surface, we ob- 

tain from Eqs. (1.1) - (1.3) and the relationships (1.4), (1. 5) differentiated with respect 
to time (the square brackets denote the difference between values of corresponding quan- 

tities on different sides of the discontinuity surface) 

IcTj,jI + Cc le.1 i- T&j [Eij’] = 0, T [qj’] = - Kij [O,i] (1.6) 
l;ij,jl = P ILTi’17 2 [Qj’l ‘= [‘j,il -t I”j,i17 i5ijl = Cijhl [uk,l]- pij [e] 

where [vi] is the jump in the displacement velocity. 

Using me first-order kinematic and geometric compatibility conditions on the discon- 

tinuity surface, we find from (1.6) 

PCahi = Sikh, + bicp* (c” - 2) p = T,c;lcb,~h, (1.7) 

Si, = CijhlVjVl, bi = PijVj, a2 = K~~v,v, (TcE)-~ 

Here Vi is the unit vector normal to the surface, c is the propagation velocity of this 

surface, ua is the square of the velocity of the thermal perturbation for the uncoupled 
problem, Ai, p are quantities characterizing the jumps in the first derivatives of the 

displacement and temperature rates, respectively 

[Vi’] = - hiC, [Yi,j] = hiVjy [O’] = - /AC, [0,,] ZZZ PVi 

The existence condition for nontrivial solutions of the system (1.7) which is homogene- 

ous relative to Ai and p, determines four velocities in the general case, and therefore, 
four kinds of acceleration waves in the anisotropic medium. Upon compliance with this 

condition, only three equations in the system (1.7) remain linearly independent. Select- 
ing 1~ as the free unknown, we obtain 

Ai = $- p’, d = ] Sij - 6iJpC2 1 (1.8) 

Here aij is the Kronecker delta, di are determinants obtained from a! by replacing the 

i-th column with a column from (- bi). In the case of an infinite velocity of heat dis- 
tribution in the body (r = 0) , the relationships (1.7) and the condition that the deter- 
minant of the system (1.7) vanish,are rewritten as 

p C2 hi z Sijta,ky d = 0 
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For specified Vi these equations can be considered as the equations governing the real 
principal values Pc12, P cS2, pcs2 and the orthogonal principal directions li(l)r &Cl), 
li(‘) of the symmetric tensor of the second rank Cijkl VjVln Then the quantities pi can 
be represented as 

?Li = iLli, ?” = r/m (1.9) 

on each of the three wave surfaces. For simplicity, the superscript indicating the ordf- 
nal number of the wave surface is omitted on the quantities Ai, ?L, di . 

2. Let us investigate the change in the characteristic values of the acceleration wa- 
ves in the propagation process. 

Differentiating (1.1) and (1.3) with respect to t, (1.2) with respect to zj and (1.5) 

with respect to t and XI and taking their difference on both sides of the wave surface, 
we obtain . 

[SLi,jl + ‘E [‘“I + TOPij [G,jl z OY z [Q;,j] + [qj,j] + K,j [Cl&j] = 0 C2* l) 

I’i,jl = P [“i”]T [Olj,j] zzz Cijkl [Vh,[j] - /3ij [e;j] (2.2) 

Eliminating the quantity I&, J from (2. l), and [Sij, J from (2.2), we find 

- [4j,jl $- rcC [@*‘I + TljTp,j [v;,j] - hlij [O,ij] = 0 (2.3) 

P [‘i”l z cijh.[ l”,,,j] _- &j [O,j'] (2.4) 

Using the second-order kinematic and geometric compatibility conditions [5, 63, we ob- 
tain a differential equation to determine the characteristic quantities from (2.3) and 

(2.4) XL.2 
PC + + hi2 & + CijklhigxQk,l (“Pj$ + yjzZ,P) - (2.5) 

Cijklhihkga’RaTb,,X~,~Xl,~ _- bihi $ + pi&&’ (~~),axj,p + 

(T,~)-lKi~g”~~~,, (Yixi,b + v~z~,P) - (T0’)-1~2KijgaBgotb,aZi,8Xj 7 - 

pbi$ + @ijg”’ (C&),aXj,p i_ Tile.? C $ + 

T&j_? g + (T,T)-la2C,C-$P = 0 

Here cap is the contravariant metric tensor of the wave surface, b,,, are coefficients of 
the second quadratic form of this surface, ZJ~ are curvilinear coettfcients on the surface, 
the indices a, p, CS, ‘G = 1.2, the 6/6t denotes a-differentiation with respect to 1 
[s]. Expressing the quantity hi in terms of P in (2.5) by means of (1.8) we obtain 

Al g + B1,pTa + D1p2 = 0, Al = p~~d,J~d-~+ T&c-la2 (2.6) 

B,, = a C2Cijkldidkdkdw2ga’ (VlXj,,~3 f VjXl,p) f C2did-‘ga’Xj,&j + 

(TOT)-l KijViXj,figap 

D, = (T,r)-1c,c-1a2 - ga’g”‘bz,xl,~j,, [(Tsr)-lKrj + Cijk~c2did~dS21 + 

PC~ (dhd,dw2C2) / 6t + (d~dkd-‘C’ + T,-G) 6~ / 6t - bi6 (did-lc) / at f 

Cijkldidelcga’ (dkd-‘c),u (YFj,p + Y~~z,P) C 
PijdidplCga’C,axj,, + g”‘pij (c2did-‘),m~j,p 

Expressing the quantities Ai in (2.5) in terms of h by means of (1.9) for an infinite 



On acceleration waves In anisotropic thermoelastic media 1043 

velocity of heat propagation (7 = 0), we obtain 

AZ $ + && + D,h2 - 0, A, = pc&a = Cij&lr~j,~gQ~ 

Da=& + Cijkl (zizli),~Ylxj~g afi - Cijklliz~2/7ZjpgaPgarbaa + 

CT, (b,Z # &Y~YJ-~~ 

(2.7) 

It follows from (2.6) and (2.7) that a change in the characteristic values of the accele- 

ration waves of all kinds depends essentially on the direction of wave surface propaga- 

tion. In the general case, the solution of (2.6) and (2.7) is fraught with awkward calcu- 

lations. Hence, let us henceforth limit ourselves to the consideration of plane waves. If 
a Cartesian orthogonal coordinate system is chosen on the wave surface, then (2.6) and 

(2.7) are written as (no summation is made over y ) 

J$ + &X,,, + w,x, = 0, r = 1, 2 (X, = l_P, x2 = ha) (2.8) 
Here 

Q,, = [i/2C~C~jr&&d-s (Yr cos (j, a) + vj cos (1, a) + 

c2did-rpij cos (j, a) + (Toz)-lKij~i cos (j, a)] (p~~d,&i-~ + 

T,‘c,c-la2)-l 

W, = (T,~)-‘c,c-~a~ (pc3dkdkcK2 + T,1c,c-1a2)-1 
92, = CiiklZiZk~l cos (j, a) (PC)-‘, W2 = T,, (b&J2 (pKijvi~J1 

Let us integrate (2.8) along the characteristics. The characteristic surfaces have the form 

(Yao is an arbitrary constant) 
y, = Q,J + yao (2.9) 

The quantities X, vary along the characteristic according to the law ( Xv0 is some con- 
stant) 

x, = x,, exp (- w,t> (2.10) 

It is seen from (2.9). (2.10) that the quantities 62 ya characterize the deviation of the 
wave tubes from the normal vector to the wave surface, and W,, determines the damping 
of the perturbation X, along the wave tubes. 

3, As an illustration, let us examine plane wave damping in a hexagonal zinc crystal 

C7, 81. 
For simplicity, we shall consider the normal vector Vi orthogonal to the xl-axis,which 

is a second-order axis of symmetry [7], i.e. vl = 0. We select an orthogonal Cartesian 
coordinate system in the plane of the wave such that the Y1 -axis is parallel to the zl- 
axis. The condition that the determinant of the system (1.7) vanish is in this case 

p c2 7 Sli = 0, c6 - mc4 + r2c2 + p = 0 (3.1) 
m 
n 

P 

It follows from 
at the velocity 

= a2 j- p-l LS,, + S,, + T,,cc-’ (b22 + b32)1 

= U2 p-l (~922 + AS,,) + pe2 IS22S33 - S232 + (Toc*F1)X 

(S33ba2 + s22b32 - 2 S,,b,b3)1 

= a2 p-2 (s232 - s,,s,,) 

(1.7) that a purely transverse wave (p = 0, hivi = 0) is propagated 
Cl = S1r”~p’l’ . The other kinds of waves, whose velocities are determ- 



i~@d by t&z SCXZ& txp.~tZon in (3. $1, wiff be ~l~~~~~~d as follows; the waye which is 
purely transverse along the principal directions Y, = 0, V3 = 0 will be called quasi- 
Fransverse (its velocity is denoted by c2) and the other two, being ~oRgitud~~1 along 
these directions, will be oalbd q~~s~-~ong~r~di~a~ f9] (their velocities are cgr cq)- 

The de~~d~~~ of the squares of the velooities on the angle q~ (yz; = COSJ gs, Ye = 

sin*@ is shown in Fig, 9 fbere and beneath only the first ~~d~~~t is &own because 

of symmetry). Curves f-4 correspond to the velocities Ct - Cs. The value of the 
relaxation time was taken to be 1: = 0,5,1Q-ll set [lOJI 

It is seen from Fig, 1 that the transverse \hrdve veeBocitfes c1 and c2 coincide along the 

prineipaf &rectforz va = 8 I Rx fp 2s 31” rlx3 ~locirk3 of the ~~~~~~ cr and t&e 

quasi -longitudinal cr waves coindde. For the transverse wave being propagated witb 

velocity ct, the sole quantity A, different from zero is determined by the rzquation 

6hr 
p’ fit -I- ;“r,2 fG2ia - Cm3f WQ = 0 f3* 21 

Therefore, the transverse wave does not damp out, and the wave tubes deviate from the 
normal vector. II-I the case of multiple velocities (cl = C,J h3 =: p = o and & and ha 
Sitis* t&e eqtaation 

Q”J$ + GY&& u fvr COS ii, ej f vj CM (1, @)I Ix- 0 i3.3) 

Zt can be seen that the second member in (3,3) is zero, hence, the solution (3.3) yields 

a, = GOIBC, kz = eons~ XII the ase of multiple velocities (+ = cg) the quantity h, 
sat$&es (3.2), and 4, h3 and It are determined f&n (2 c S& 

Presented in Figs, 2 and 3 are dependences of the damping cooefficients Wr and the 

Fig, 2 
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quantity 51,s characterizing the deviation of the wave tubes from the normal vector, on 

the angle ‘p. It is seen that the quasi-longitudinal wave being propagated with velocity 
CQ damps out most rapidly, while the quasi-transverse wave has minimal damping (curve 
.Z in Fig.2 is magnified twentyfold). It should 

be noted that the wave tubes only deviate in 
the ~~3~ plane,and the quantity a,, equals 

Fig. 5 Fig, 6 

zero. The maximal deviation is for the q~si-longitudinal wave with velocity c3. The 

deviation of the q~si-ua~verse wave changes sign starting with cp sz 52” and becomes 
negative. The quantity Q2,, changes sign for all kinds of waves upon passing through 

rp = n/2 . 
In the case of an infinite velocity of heat distribution in the zinc crystal, the transverse 

wave with velocity c1 coincident with the transverse wave velocity in the ‘G + 0 case 

is propagated, as is also the quasi-transverse with velocity cp and the quasi-longitudinal 

with velocity cs. 
The dependence of the velocities, the damping coefficients W, and the quantity 62,? 

on the angle cp are presented in Figs. 4 - 6. respectively. Curves 1-3 correspond to the 
velocities c1 - es. Curve 2 in Fig. 5 is magnified sixfold. 

It is seen from the graphs that the finiteness of the heat propagation velocity essent- 
ially influences the nature of plane wave pro~gation, especially the behavior of their 
damping coefficients. 

In conclusion, let us consider the uncoupled problem taking account of the finiteness 

of the heat propagation velocity. In this case, four kinds of acceleration waves exist in 

the crystal. Three of them are propagated with the velocities of elastic waves (Fig. 4). 
and one with the velocity c = u. For elastic waves the change in the characteristic 
quantity A3 is determined by (2.8). in which it is necessary to set (I’, = U. It is seen 

that these waves do not damp out, but the deviation of the wave tubes agrees exactly 

with the z ;= 0 case (Fig. 6). In the c = a case, the change in the characteristic 
quantity p is determined by the equation 

6P 2rcca x + K,jg”‘p ,a (vixj,p + Y~~~,~) i- UC& = 0 

The dependence of the square of the velocity a, the damping coefficient W , and the 

deviation of the wave tubes Q on the angle cp are shown by dashes in Figs. 4, 2, 6, 
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respectively. It is seen that the thermal wave velocity and damping in a zinc crystal 
depend weakly on the propagation direction. 

Thus, a characteristic singularity of acceleration wave propagation in an anisotropic 

medium is the deviation of the wave tubes from the normal vector. For ‘G == 0 a second 
quasi-longitudinal wave appears which damps out more rapidly than the first. The re- 
laxation time ‘c turns out to exert substantial influence on the nature of quasi-longitu- 
dinal and quasi-transverse wave propagation. 
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The general uncoupled dynamical problem of thermoelasticity for a half-space 
under the condition of a thermal impact with a finite rate of change in tempera- 
ture on its boundary is solved by the method of principal (fundamental) functions 
within the framework of a generalized theory of heat conduction. 

An elastic steel half-space is analyzed as an illustration. The problem on ther- 
mal stresses originating in an elastic half-space due to thermal impact produced 
by a jump change in temperature on the boundary was first analyzed in [l]. 
Since the temperature change on the boundary occurs at a finite rate, it is gene- 


